

江島 淸 社長

Delta-Fly Pharma 株式会社(4598)

企業情報

市場	東証マザーズ
業種	医薬品(製造業)
代表取締役社長	江島 清
所在地	徳島県徳島市川内町宮島錦野 37-5
決算月	3月末日
HP	https://www.delta-flypharma.co.jp/

株式情報

株価	発行済株式数		時価総額	ROE(実)	売買単位
2,173 円		4,504,600 株	9,788 百万円	-56.0%	100 株
DPS(予)	配当利回り(予)	EPS(予)	PER(予)	BPS(実)	PBR(実)
0.00 円	_	-188.70 円	_	456.47 円	4.8 倍

^{*}株価は 9/30 終値。発行済株式数、DPS、EPS は 21 年 3 月期第 1 四半期決算短信より。ROE、BPS は前期実績。

業績推移

決算期	売上高	営業利益	経常利益	当期純利益	EPS	DPS
2017年3月(実)	902	328	323	305	88.31	0.00
2018年3月(実)	150	-243	-244	-246	-71.20	0.00
2019年3月(実)	1	-592	-671	-673	-170.16	0.00
2020年3月(実)	100	-1,545	-1,552	-1,555	-348.32	0.00
2021年3月(予)	300	-850	-850	-850	-188.70	0.00

^{*}単位:円、百万円。予想は会社側予想。2018年6月25日付で1:500の株式分割を実施。EPSは遡及調整。

Delta-Fly Pharma 株式会社の業績動向、開発状況の進捗などをご紹介します。

目次

今回のポイント

- 1. 会社概要
- 2. 業績動向
- 3. 成長戦略
- 4. 今後の注目点

<参<u>考:コーポレートガバナンスについて></u>

1

今回のポイント

- 既存の抗がん活性物質等を「モジュール」(構成単位)として利用し、用法用量や結合様式等に創意工夫を加えて組み立てることで臨床上の有効性と安全性のバランスを向上させた副作用の少ない新規抗がん剤を創製する「モジュール創薬」という独自コンセプトで抗がん剤を開発。
- 「モジュール創薬」は治療効果の向上、副作用消失、低コストといった患者メリットに加え、特許化による高い排他性、迅速な開発スピード、低開発リスクといった開発上のメリットも大きい。同社では現在 6 つの製品・開発パイプラインを有し、4 品目が臨床試験実施中、2 品目が臨床試験準備中である。
- モジュール創薬の他、抗がん剤開発への特化、経験豊富なメンバーによる開発、外部資源の有効活用による効率的な企業運営なども同社の特徴。
- 21 年 3 月期第 1 四半期は、マイルストーンなど事業収益は無く、開発パイプラインの臨床試験における医療機関並びに 症例数の増加、新たな臨床試験の準備を進めたため、研究開発費が増加した結果、営業損失は前年同期比 36 百万円拡 大の 2 億 53 百万円となった。
- 21 年 3 月期の通期予想に変更は無い。事業収益については、ライセンス契約に伴うマイルストーン対価として 300 百万円を見込んでいる。DFP-10917 は米国における臨床第 Ⅲ 相試験の症例登録をさらに進めると共に、DFP-14927 の米国における臨床第 Ⅰ 相試験を完了する予定。
- また、DFP-14323の国内における臨床第Ⅱ相試験の症例登録の完了により、次の臨床第Ⅲ相試験(大規模比較試験)は中国の製薬企業と合同で取り組むことを含めて準備を進める予定である。加えて、日本ケミファ(株)と提携した DFP-17729 は、国内における臨床試験を開始する予定であり、これらの開発パイプラインを進めるため、前倒しで前期に原薬や製剤の製造を実施したことに伴い、研究開発費は減少する見込み。
- 「DFP-10917」を始めとして新型コロナウイルス感染拡大による臨床試験への影響がでたが、影響の少ない地域の医療機関で臨床試験を継続するなど、大きな後れは出ていないようだ。また、2025 年度までの上市を計画するとともに、大きな需要が見込まれる中国での展開を計画している「DFP-14323」は臨床第 Ⅲ 相試験の準備に入るなど、開発・事業化は着実に進捗している。引続き各種リリースに注目していきたい。

1. 会社概要

『「がん」だけを見ることなく、「がん患者」の全体を診ることにより、安心して家族のがん患者に勧められる治療法を提供すること』を企業理念に、既存の抗がん活性物質等を「モジュール」(構成単位)として利用し、用法用量や結合様式等に創意工夫を加えて組み立てることで臨床上の有効性と安全性のバランスを向上させた副作用の少ない新規抗がん剤を創製する「モジュール創薬」という独自コンセプトで抗がん剤を開発。

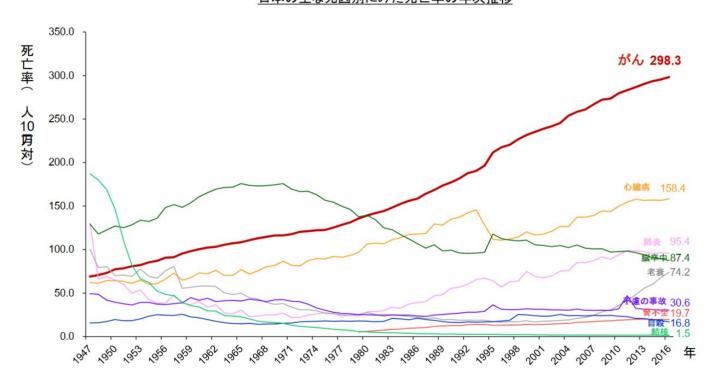
【1-1 沿革】

徳島県出身の江島社長は、名古屋工業大学卒業、東京工業大学修士課程修了後、地元徳島県の製薬企業である大塚グループに就職し、その事業会社の一つ大鵬薬品工業に配属となった。入社後すぐに早稲田大学理工学部に留学し、約 12 年間、研究者として医薬品、特に、機能性高分子から成る新薬の開発に関する研究に取り組む。その後、大鵬薬品工業の医薬品のシーズ探索を担当する部門在籍時、米国バイオベンチャーのマネジメントのあり方などを目の当たりにした際、大手製薬企業の研究開発組織で開発に携わるのではなく、独立して自分の力で製薬会社をマネジメントし、新しいアプローチで創薬を行いたいという意欲が強く湧き上がる。同時に、単に創薬を目指すのではなく、目の前にいる患者に何をしてあげられるのかを常に考えながら、ビジネスとして成立させることを目指し、2010 年、江島社長 61 歳の時、大鵬薬品工業を退任し、Delta-Fly Pharma 株式会社を設立。モジュール創薬による副作用の少ない患者に優しい抗がん剤開発に取り組んでおり、2019 年 9 月現在 6 つの製品・開発パイプラインを有している。2018 年 10 月、東証マザーズに上場した。

【1-2 企業理念·経営理念】

社名「Delta-Fly」は「Dragonfly(とんぼ)」に由来している。とんぼは前にしか進まず退かないところから「不退転」の精神を象徴し、「勝ち虫」とも呼ばれていることから、強い意志をもって医薬品開発を行う決意を表している。

企業理念

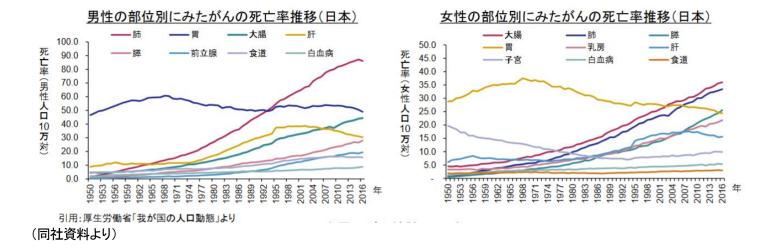

「がん」だけを見ることなく、「がん患者」の全体を診ることにより、安心して家族のがん患者に勧められる治療法を提供すること

後述するように、同社は「がん」に打ち勝つことのみを目的とする抗がん剤を開発するのではなく、抗がん剤の大きな課題である副作用を軽減し、価格も含め患者およびその家族が安心して用いることのできる抗がん治療を提供することを自社の社会的存在意義であると認識している。

【1-3 同社を取り巻く環境】

厚生労働省「平成30年(2018)我が国の人口動態統計」によれば、2016年の主な死因別死亡率(人口10万人に対し何人が死亡したか)は悪性新生物(がん)が、298.3人で第1位であった。1981年に死亡率142.0人で、同134.3人の脳血管疾患に代わり第1位となって以来30年以上にわたり連続して第1位であり、その数値も年を追って上昇している。高齢化、また食生活を含めたライフスタイルの変化等によりがん発症率は上昇していると言われている。

日本の主な死因別にみた死亡率の年次推移

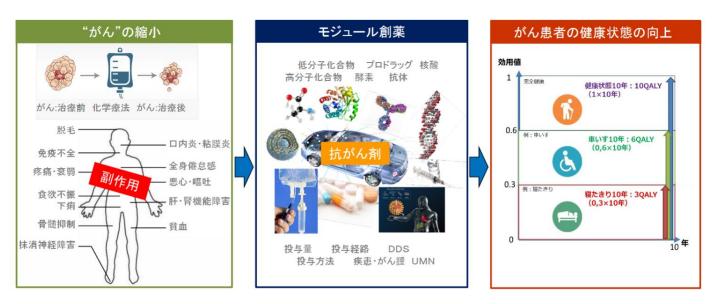


出所:中国獐生和計画生育統計年鑑-2016

引用:厚生労働省「我が国の人口動態」より

(同社資料より)

こうした状況に対し、様々な抗がん剤が用いられ、新薬の開発も行われているが、周知のように抗がん剤治療に伴う各種副作用は、がん患者にとって大きな負担であり、患者の QOL(Quality Of Life:生活の質)向上の観点から副作用の軽減ニーズは極めて大きなものとなっている。


(副作用発生の仕組み)

がん細胞は、急速に分裂して成長するので、抗がん剤は、成長の速い細胞を殺すように作られている。しかし同時に健康な細胞にも、骨髄で造られる血液細胞、消化器の細胞、生殖器の細胞、毛根細胞など急速に細胞分裂するものがあり、抗がん剤はがん細胞だけでなくこれらの正常細胞にも影響を与えてしまい、嘔気、嘔吐、脱毛、疲労感といった副作用を引き起こす。

【1-4 事業内容】

(1)同社の創薬方法:モジュール創薬

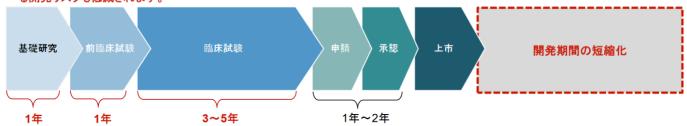
多くのバイオベンチャーがある中で、同社を最も特徴づけるのが同社の創薬コンセプト「モジュール創薬」である。

(同社資料より)

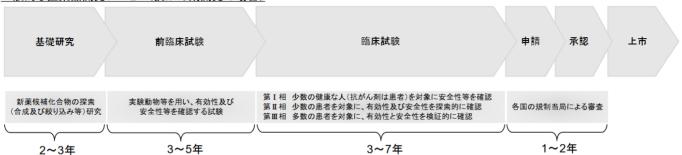
既存の抗がん活性物質等を「モジュール」(構成単位)として利用し、用法用量や結合様式等に創意工夫を加えて組み立てることで臨床上の有効性と安全性のバランスを向上させた新規抗がん剤を創製するのが「モジュール創薬」である。 「モジュール創薬」では「がん」だけを見ることなく、「がん患者」の全体を診ることによって、未だに効果が限定的で多くの様々な副作用のある抗がん剤を複合的に改良して、副作用の少ない安心して家族のがん患者に勧められる薬剤にする。

(モジュール創薬の優位性)

患者へのメリット	◇ 患者情報に基づく創薬だから治療効果が上がる。
	◇ 患者情報に基づく創薬だから従来の副作用が消失する。
	◇ 基礎と臨床試験が少なく短期間だからコストが低い。
開発上のメリット	◇ 新規性・進歩性により特許化できるから高い排他性を有する。
	◇ 患者情報に基づく開発だから開発スピードが速い。
	◇ 患者情報に基づく開発だから開発リスクが低い。


一般的な抗がん剤の創薬においては、基礎の探索研究段階でがんの特異的な部分に作用する化合物をスクリーニングし、可能性のある化合物を抗がん剤候補とするが、臨床段階で作用を確認し、臨床試験で有効性と安全性を実証する必要があり、 基礎段階からの研究開発に長い期間を要する。

これに対して、「モジュール創薬」は、既に医薬品として使用されている抗がん剤の活性物質を利用して組み合わせるため、基礎の探索研究がほとんど不要であることに加え、臨床での有効性と安全性の予測が可能であるため創薬に着手して 1~2 年後には臨床試験を開始できているなど、一般的な抗がん剤よりも研究開発の効率が高く、開発期間も短くなり、臨床試験で失敗する等の開発リスクが低減されている。


また、がん患者の治療上の課題に注目して、特許切れの医薬品を抗がん剤の知識とノウハウを駆使して組み合わせれば、新規の抗がん剤としての特許化が可能である。

当社の医薬品開発プロセス

- 一般的な抗がん剤開発のプロセスに対して、モジュール創薬は既に医薬品になっている抗がん剤の活性物質を利用して組み合わせる方法のため、基礎研究がほとんど不要となります。
- 臨床での有効性と安全性の予測が可能となることから、一般的な抗がん剤開発よりも研究開発の期間が短く、かつ臨床試験で失敗する開発リスクも低減されます。

一般的な医薬品開発プロセス(抗がん剤開発の場合)

- 通常、一つの医薬品を開発するのに約10~15年に亘る長い期間と数十億円~数百億円に到る大規模な資金が必要となります。
- 医薬品開発は、承認に到るまでの各段階において、様々な要因により開発中止に到るリスクが大きく、世界の製薬会社や創薬ベンチャー企業にとっては、研究開発プロセスの効率化と開発リスク低減が大きな課題となっています。

(同社資料より)

また、近年、新薬開発のコスト低減などを目的とし、製薬企業においては後発薬ジェネリックや既存薬剤から新たな薬効を見つけ出すドラッグ・リポジショニングの開発が拡大している。

これらは既存薬を利用するという点では「モジュール創薬」と同じだが、ジェネリックはもちろんだが、ドラッグ・リポジショニングにおいても新規性・進歩性が認められにくいため特許取得が困難であるのに対し、「モジュール創薬」は全て特許化された新たな薬剤に生まれ変わるという点が決定的な違いとなっている。

このように、抗がん剤の問題点を解決しようとする限り、完全に新規の抗がん剤を生み出すことが可能であることから、同社では「モジュール創薬」は新たな創薬手法の大きなイノベーションになり得ると確信している。

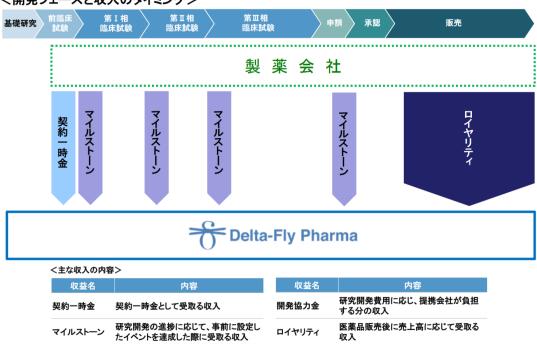
(2)ビジネスモデル・収益モデル

(ビジネスモデル:効率的な研究開発体制を構築)

新しい医薬品が上市されるまでには、「基礎研究」から始まり、「前臨床試験(動物を用いて薬効薬理作用、生体内での動態、有害な作用などを調べる試験)」、「臨床試験(医薬品や治療技術などの人間への影響を調べる科学的試験)」を経て、当局への申請・承認を得たのち、「製造」、「販売・マーケティング・製造販売後調査」といったプロセスを経るのが一般的である。

こうしたプロセスにおいて同社は、研究開発のマネジメント業務に集中し、具体的な業務については国内外の優れた外部の研究開発受託会社や製造受託会社に委託しており、開発フェーズに応じた外部協力機関との連携により、効率的な研究開発体制を実現している。

また、三洋化成工業株式会社(東証 1 部、4471)との間で、ドラッグデリバリーシステムを用いた新規抗がん剤における共同研究開発にも取り組んでいる。


(収益モデル)

研究開発段階においては、提携製薬会社との契約に基づく「契約一時金」、「マイルストーン」、「開発協力金」が主な収入となる。 将来、提携対象の製品が上市に至った場合には、売上高に応じた「ロイヤリティ」収入を受け取る予定である。

現在の提携製薬会社は以下の3社。

協和化学工業株式会社(未上場)	抗がん剤候補化合物 DFP-14323 の日本における独占的ライセンス契約を締結
日本新薬株式会社(東証1部、4516)	抗がん剤候補化合物 DFP-10917 の日本における独占的ライセンス契約を締結
日本ケミファ株式会社(東証1部、4539)	抗がん剤候補化合物 DFP-17729 の日本における独占的ライセンス契約を締結

<開発フェーズと収入のタイミング>

(同社資料より)

(3)製品・開発パイプライン

現在、前述の経営方針に沿って以下6つの製品・開発パイプラインを有している。

パイプラインの開発・事業化の経緯、現状、今後の計画は以下のとおりで、4 品目が臨床試験実施中、2 品目が臨床試験準備中である。

(同社資料より)

(1) TDFP-10917 I

項目	概要
主な対象疾病	難治性·再発急性骨髄性白血病
	急性骨髄性白血病の死亡者数は日本1万人、米国3万人、欧州3万人、中国2万人。
	白血病による死亡者の 85%は 60 歳以上である。
	標準療法は確立されており、一時的には 7 割程度は血液中のがん細胞が消滅する寛解とな
	るが、再発も多く、完全に治癒するのは全体の3割である。
既存薬の特徴など	既存薬 CNDAC は固形がんを対象疾患とし、投与量は高用量・短時間で、投与経路は点滴ま
	たは経口。固形がんへの効果が限定的であるのに加え重篤な副作用が散見された。
モジュールの改良点・効果	投与量を低用量・長時間とし、投与経路も点滴による持続静注としたところ、従来使用されて
	きている核酸誘導体(シタラビンやゲムシタビンなど)とは異なる作用を引き起こし、既存の化
	学療法が無効な難治性・再発急性骨髄性白血病患者に対しても、薬効を期待できる。
特許取得国(20年5月)	日本、アメリカ、EU、中国、オーストラリア、韓国、ロシア

(開発状況・今後の事業化)

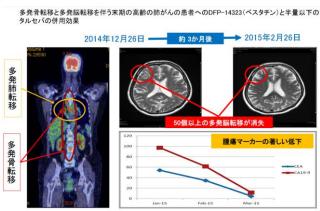
米国で行われた臨床第 I/II 相試験では、第 II 相パートで 48%(14/29 例)の患者で奏効し、高い有用性が示唆された。これを受け、米国規制当局(FDA)との臨床第 II 相試験終了時会議を経て、臨床第 III 相試験の治験実施計画書を提出。合意を得ることができたが、再発・難治急性骨髄性白血病の治療体系の変更に伴い第 III 相試験のプロトコールの一部を改訂の上、米国 FDA に再提出し、臨床第 III 相試験が始まった。スタートアップミーティングを実施し、被験者スクリーニングを開始した。米国の一部治験施設で新型コロナウイルス感染拡大による影響があったが、影響の少ない地域の治験施設において臨床第 III 相試験の症例登録を着実に進めている。

2021 年度までの第Ⅲ相試験終了、2022 年度までの米国での承認・販売を目指している。

日本国内については、ライセンス先の日本新薬株式会社で臨床第 I 相試験の準備中であり、医薬品医療機器総合機構の対面助言を受けた。

(特許関係)

2020 年 5 月、DFP-10917 と併用を予定している Venetoclax の新規誘導体の物質特許を出願した。


特許出願した Venetoclax の新規誘導体は、Venetoclax を水溶性の高分子に共有結合させた新規物質で、標的部位のがん病 巣に活性物質の Venetoclax を選択的に輸送できるため、ヒト急性骨髄性白血病細胞を皮下移殖した動物実験では、既存の Venetoclax の投与量の数十分の一以下で同等の薬効を示し、安全性に優れていることを確認した。

2ГDFP-14323 J

項目	概要
主な対象疾病	末期の肺がんなど
既存薬の特徴など	既存薬ベスタチン(ウベニメクス)は血液がんを対象疾患とし、投与量は高用量で、投与方法
	は単剤。経路は点滴または経口。血液がんのみの適応だが、肺がんで延命効果があった。
モジュールの改良点・効果	抗腫瘍効果の増強を目的とし投与量を低用量、投与方法を分子標的治療薬との併用としたと
	ころ、肺がんでの効果が確認された。がん患者の免疫機能を改善し、末期又は高齢の固形
	がん患者の治療が期待できる。
特許取得国(20年5月)	日本、アメリカ、EU、オーストラリア、ロシア、韓国、中華民国

◎「DFP-14323」の臨床効果の確認

(同社資料より)

(開発状況・今後の事業化)

既存薬ウベニメクスは日本において、日本化薬(株)が、「成人急性非リンパ性白血病に対する完全寛解導入後の維持強化化 学療法剤との併用による生存期間の延長」の効能・効果で承認済。

Delta-Fly は適応追加として、「EGFR 遺伝子変異陽性非小細胞肺がん患者を対象とした低用量 EGFR-TKI 併用治療の臨床第 II 相試験」を 2018 年 1 月から日本国内で開始し、国内治験参加施設の拡大により、新規症例の登録を進めてきたが、2020 年 3 月、症例数全ての症例登録が完了した。

その後、登録した全症例(脳転移症例を含む)の病勢コントロール率に基づく効果判定作業を進めていたところ、同年 6 月には病勢コントロール率 100%に達し、また、独立の立場の医師による効果判定評価において、病勢コントロール率(DCR)が100%および奏効率(ORR)が65.4%以上と有効性が確定した。

また、「脳転移を有する末期非小細胞肺がん患者を治療するための組み合わせ医薬品」としても有用であることを改めて見出したことに基づき、特許を PCT (特許協力条約)加盟国に対し国際出願した。

また、11 月にシンガポールで開催される ESMO ASIACONGRESS 2020(欧州臨床腫瘍学会アジア大会)において臨床データの詳細に関して発表する予定である。

日本における臨床第 2 相試験の良好な成績と知財基盤を下に、今後の DFP-14323 の臨床第 3 相比較試験の対象を「脳転移を伴う非小細胞肺がんの患者」に予定し、肺がん患者の数が世界で最も多いとされる中国を含めることで、一日でも早い承認・上市を目指し準備を進めていく。

順調に進めば、2023 年度までに日本での適応追加の承認・販売を目指している。 協和化学工業株式会社(未上場)と日本における独占的ライセンス契約を締結している。

(特許関係)

2020年5月、欧州における特許が成立した。

現在、中華人民共和国においても DFP-14323 の特許申請を行っており、中国特許庁との間で審査対応中。中華人民共和国での特許が成立した際には、主要国におけるグローバル事業展開の体制が整う予定である。

③ГDFP-11207 J

項目	概要
主な対象疾病	進行再発膵臓がん胃がん
既存薬の特徴など	既存薬ティエスワンは血小板減少を含む血液毒性により治療の継続が不充分であった。
モジュールの改良点・効果	DFP-11207 は抗がん作用を有する 5-フルオロウラシル(5-FU)の薬物動態を制御するため
	に、徐放・阻害・失活させる3つのモジュール化された活性物質(モジュール I、II、III)を結合し
	た化合物。
	従来の 5-FU 系抗がん剤で発現する血小板減少を含む血液毒性が回避されており、有効性
	と安全性のバランスが改善され、長期に継続して治療することが可能となった。
	化合物の組み合わせを改良した「モジュール創薬の代表例」。
特許取得国(20年5月)	日本、アメリカ、EU、中華人民共和国、オーストラリア、韓国、ロシア、中華民国、香港

(開発状況・今後の事業化)

米国にて固形がん(消化器がん)を対象に臨床第 I 相試験を進め、次試験の推奨用量と従来の 5-FU 系抗がん剤で発現していた血小板減少の副作用がないことを確認した。

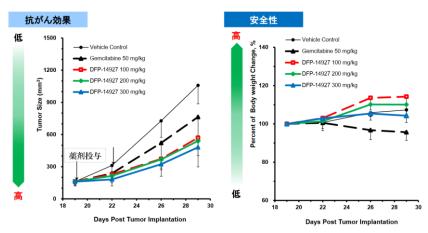
現在、食事の影響試験が終了し、その総括作業と、治験責任医師との協議を行い、抗がん剤併用の第 II 相試験の治験計画を取りまとめ準備を進めている。

第 I 相試験と食事の影響試験の結果を中国臨床腫瘍学会(CSCO)と日本癌治療学会(JSCO)で発表した。

また、2020年5月には米国での臨床第1相試験結果の論文が米国のがん治療専門誌「Investigational New Drugs」に掲載され、下痢がない、白血球減少が少ない、血小板毒性が全くない、休薬期間が不要など安全性が確認され、高い延命効果が期待できるとの見解が発表された。

こうした米国の臨床試験データに関心を寄せている中国の製薬会社との間で、米国と中国での共同開発余地についても協議中である。

2024年度までに米国または中華人民共和国での承認・販売を目指している。


4 [DFP-14927]

項目	概要
主な対象疾病	膵臓がん、胃がん、骨髄異形成症候群
既存薬の特徴など	既存薬 DFP-10917 は投与には持続静注用ポーチを利用し、14 日間連続の投与が必要で利
	便性の向上が必要であった。また対象疾患は血液がんのみであった。
モジュールの改良点・効果	ポリエチレングリコール結合を行った抗がん剤候補物質 DFP-14927 は、DFP-10917 の高分
	子デリバリーであり、がん組織へ選択的に集まり、がん細胞内で効果的にDFP-10917を放出
	することを可能とした。
	また投与回数を週 1 回投与に減らし、投与経路も点滴静注とし、対象疾患は血液がんに加
	え、固形がんや骨髄異形成症候群に広がった。
	加えて、膵臓がんの動物モデルでは、膵臓がんの標準化学療法剤であるゲムシタビンより効
	果、安全性が共に高いことが確認されている。
特許取得国(20年5月末)	日本、アメリカ、中華人民共和国、オーストラリア、ロシア

◎「DFP-14927」の実践動物での薬効の確認

膵臓がんの動物モデルにおいては、「DFP-14927」は膵臓がんの標準化学療法剤であるゲムシタビンよりも効果、安全性が共に高かった。

(同社資料より)

(開発状況・今後の事業化)

米国において前臨床試験が終了している。前臨床試験のデータでは、週1回投与で血液中濃度が長時間安定であることを確認しており、固形がんに対する抗腫瘍効果を認めている。

2018 年 3 月に三洋化成工業(株)と共同開発契約を締結し、臨床第 I 相試験開始申請の準備を進めてきたが、2019 年 1 月 18 日、米国 FDA による IND (Investigational New Drug: 臨床試験用の新医薬品)の安全性審査が完了し、米国での臨床第 I 相試験の実施が許諾され、膵がん 及び胃がんを含む消化器がん患者を対象に臨床第 I 相試験を開始。新型コロナウイルス感染拡大による影響があったが、治験施設並びに治験責任医師の支援により、症例登録を順調に進めている。また、この臨床試験とは別に、骨髄異形成症候群を含む血液がも患者への可能性も検討する予定である。

また、この臨床試験とは別に、骨髄異形成症候群を含む血液がん患者への可能性も検討する予定である。 2025 年度までに米国での承認・販売を目指している。

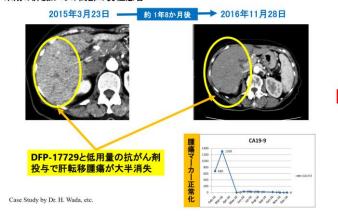
(5) FDFP-10825 J

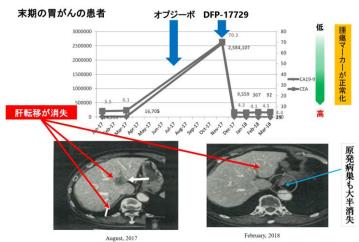
項目	概要
主な対象疾病	胃がん、卵巣がん、膵臓がんの腹膜播種転移
既存薬の特徴など	基本薬 siRNA は、基礎効果としては確実な阻害効果がみとめられるが、臨床効果としては全身投与での効果に難があった。
モジュールの改良点・効果	RNA 干渉を利用した核酸医薬は、がん分子標的薬やがん免疫療法剤に次ぐ、次のがん治療薬として期待されている。核酸医薬 DFP-10825 は、がんの増殖に多大な影響を与える因子をRNA 干渉で特異的に阻害させるために、全身投与ではなく腹腔内投与で効果を発揮できるように工夫している。卵巣がんや胃がん等の患者では、終末期になると胸水や腹水などの体液貯留(腹膜播種転移)が認められるが、腹腔内に直接注入して効果を発揮することにより、腹水をコントロールして苦しさを和らげ、延命につながることが期待される。
特許取得国(20年5月)	日本、アメリカ、EU、中華人民共和国、韓国、ロシア、中華民国、香港

(開発状況・今後の事業化)

すでに卵巣がん、胃がん及び膵がんで生じる腹水の原因となる腹膜播種転移に対する薬効試験と薬物動態試験を終え、原薬、DDS 及び製剤などの治験薬の製造法についても現行の医薬品適正製造基準(cGMP)による予備的な検討を終えている。今後は、株式上場で得られた資金の一部を活用し、医薬品の安全性に関する非臨床試験の実施基準(GLP)による前臨床試験を追加した後、米国 FDA に IND 申請の上、米国で卵巣がん、胃がん及び膵がんの腹膜播種転移の患者を対象に臨床第 I 相試験を開始する予定である。出願中の各国の特許証も届いている。

原薬と治験製剤の準備を進めると共に、前臨床試験を進めており、2020 年度までに米国または日本国内での臨床試験の開始 を目指している。




⑥「DFP-17729」

項目	概要
主な対象疾病	末期の膵臓がん、悪性黒色腫胃リンパ腫、胃がん、肺がん
既存薬の特徴など	既存薬である尿アルカリ化剤は、高尿酸血症などを対象疾患とするものだが、膵がんで延命
	効果が認められたほか、各がん腫瘍で抗腫瘍効果が見られた。
モジュールの改良点・効果	正常細胞では細胞内と比べて細胞外でアルカリ性となっているが、がん細胞の細胞外は酸
	性となっている。これは、がん細胞の増殖により解糖系が亢進し、乳酸や水素イオンが産生
	され、それを積極的に細胞外へ排出しているからである。
	DFP-17729 は、がん細胞の細胞外をアルカリ化することにより、がんの増殖を抑える。抗が
	ん剤との併用、免疫チェックポイント阻害剤との併用により免疫チェックポイント阻害薬単独療
	法に比べて効果を増強することが動物実験で確認されている。
特許取得国(20年5月末)	日本、韓国

◎DFP-17729の臨床効果の確認

(開発状況・今後の事業化)

医薬品として承認・販売されている尿アルカリ化剤の、日本における抗がん剤としての適応追加の準備を進めている。 尿アルカリ化剤は「アシドーシスの改善」の効能・効果で、「高尿酸血症」や「腫瘍崩壊症候群」などの治療で、すでに臨床現場 で使用されているため、前臨床試験は不要。抗がん剤や免疫チェックポイント阻害剤との併用により、既存薬の抗腫瘍効果の 範囲を広げ、新たながん治療の提供を目指す。2020年度までに日本国内での臨床試験の開始を目指している。

2020 年 3 月、日本国内における「DFP-17729」の独占的販売権ならびに日本国内で販売するための独占的製造権を日本ケミファに付与するライセンス契約を締結することを合意した。

Delta Fly Pharma は既存の抗がん剤との併用で膵臓がん患者を対象に臨床試験を実施し、日本ケミファは日本において「DFP-17729」の製造承認が取得された後の販売と製造を担う。

2020 年 5 月、「DFP-17729」に関する論文を米国がん学会誌「Molecular Cancer Therapeutics」に投稿した。

一般に膵臓がん患者の 5 年生存率は数%以下と悲惨な状況にあるが、この研究では既存の膵臓がん治療剤の治療効果を高めるとともに、がん免疫チェックポイン阻害剤(抗 PD-1 抗体)の効果を高めることが示されている。また、「DFP-17729」は、既存の抗がん剤に見られる副作用はなく、既存の抗がん剤との併用による毒性の上乗せを伴わないことも確認している。

こうした実績を受け、末期のすい臓がん患者を対象に日本国内の複数の医療機関において、臨床第1相/第Ⅱ相試験を実施することを目的に、2020年7月には治験計画届をPMDA(独立行政法人医薬品医療機器総合機構)に提出し、PMDAの調査も完了した。

この臨床試験は、末期の膵臓がん患者の病状を鑑み、臨床第3相試験に移行する前に臨床第1相/第2相試験での安全性 /有効性を探索的に確認するもので、第1相部分では既存薬とDFP-17729を併用した場合の安全性を確認し、第2相部分で

は既存薬と比べて優れているかを確認する比較試験を行う。

PMDA の了解に従って、関東地区の大学病院や主要ながんセンターの 6 施設で実施する予定で、今後、治験の実施予定施設での治験審査委員会による厳重な審査を経て、各施設と契約締結したうえで、被験者の登録と DFP-17729 の投与を開始する運びとなる。

先ず提携パートナーの日本ケミファ(株)と共同で日本における臨床試験を進めた後、将来的には、日本国内の治験データに基づいて、米欧やアジア諸国でも展開する計画である。

【1-5 バイオベンチャーとしての4つの特徴】

バイオベンチャーとしての同社を特徴づけるのは主に以下の 4 点である。

①モジュール創薬

前述のように、既存の薬剤等を「モジュール」(構成単位)で創意・工夫して組み立てることで特許化し、臨床上の有効性と安全性のバランスを向上させた新薬を生み出している。

②抗がん剤開発への特化

未だに効果が限定的で多くの様々な副作用がある「抗がん剤」を対象にすることで、モジュール創薬による新薬開発を加速し、 がん患者の社会生活の改善に貢献している。

③経験豊富なメンバーによる開発

長年にわたり抗がん剤の研究・開発に従事してきた製薬会社経験者と、がん患者のことを良く知る臨床医から構成されるメンバーで、確実に開発を進め、アンメット・メディカル・ニーズに応えており、同社の強力な差別化要因、競争優位性となっている。

4 外部資源の有効活用

工場や研究所を持たず、研究開発マネジメント業務に集中し、外部の受託機関などに委託して積極的な連携を図ることにより、効率的な運営を行っている。

2. 業績動向

(1)2021年3月期第1四半期決算概要

①業績概況

	20/3期1Q	21/3期1Q	前年同期比
事業収益	I	ı	ı
事業費用	216	253	+36
研究開発費	152	185	+32
その他販管費	63	67	+3
営業利益	-216	-253	-36
経常利益	-218	-253	-34
四半期純利益	-219	-253	-34

単位:百万円

(事業収益)

マイルストーンなどは無かった。

(事業費用)

開発パイプラインの臨床試験における医療機関並びに症例数の増加、新たな臨床試験の準備を進めたため、研究開発費が 増加した。

(営業利益)

営業損失は前年同期比36百万円拡大の2億53百万円となった。

②財務状態

◎主要BS

	20年3月末	20年6月末		20年3月末	20 年 6 月末
流動資産	2,115	1,835	負債合計	105	79
現預金	1,943	1,801	純資産合計	2,056	1,802
固定資産	46	46	利益剰余金	-3,622	-3,875
有形固定資産	43	43	負債純資産合計	2,162	1,881
資産合計	2,162	1,881	長短借入金残高	5	4

単位:百万円

自己資本比率は前期末比 0.7 ポイント上昇し 95.8%。

(2)2021年3月期業績見通し

	20/3 期	21/3期(予)	前期比
事業収益	100	300	+200
販売管理費	1,645	1,150	-495
研究開発費	1,397	880	− 517
その他販管費	248	270	+22
営業損失	-1,545	-850	+695
経常損失	-1,552	-850	+702
当期純損失	-1,555	-850	+705

単位:百万円

業績予想に変更は無い。

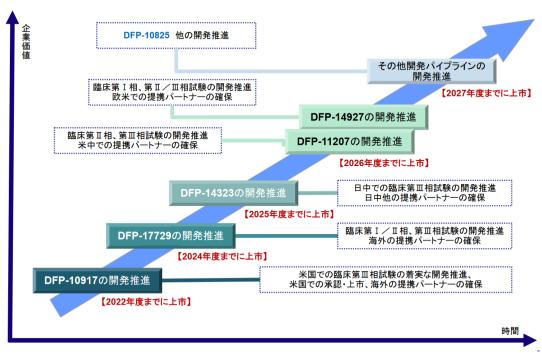
新型コロナウイルスの感染拡大による移動制限が、臨床試験に参加する被験者の医療機関への訪問にも影響し、国内の大手 製薬企業では、新規の臨床試験の立ち上げや進行中の臨床試験の患者登録を一時中断した結果、4月前半の新規患者登録 数は3月と比較して約57%減少したが、同社においては影響を受けながらも着実に臨床開発を前進させた。

(事業収益)

ライセンス契約に伴うマイルストーン対価として300百万円を見込んでいる。

臨床試験の進捗状況及びライセンス交渉の不確実性を考慮すると、現段階で期待されるマイルストーン対価並びに契約一時 金等を計上することは適切でないと考えており、収益が確実になった段階で公表する予定。

(事業費用)


DFP-10917 は米国における臨床第Ⅲ相試験の症例登録をさらに進めると共に、DFP-14927 の米国における臨床第Ⅰ相試験を完了する予定。また、DFP-14323 の国内における臨床第Ⅱ相試験の症例登録の完了により、次の臨床第Ⅲ相試験(大規模比較試験)は中国の製薬企業と合同で取り組むことを含めて準備に着手した。

加えて、日本ケミファ(株)と提携した DFP-17729 は、国内における臨床試験を開始する予定であり、これらの開発パイプラインを進めるため、前倒しで前期に原薬や製剤の製造を実施したことに伴い、研究開発費は減少する見込み。

3. 成長戦略

臨床試験実施中の 4 品目および臨床試験準備中の 2 品目の開発を着実に進め、2022 年度以降着実な上市を目指している。 また収益の最大化を目指し、日本・中国・欧州・米国での提携パートナー確保にも注力する。

(同社資料より)

4. 今後の注目点

「DFP-10917」を始めとして新型コロナウイルス感染拡大による臨床試験への影響がでたが、影響の少ない地域の医療機関で臨床試験を継続するなど、大きな後れは出ていないようだ。

また、2025 年度までの上市を計画するとともに、大きな需要が見込まれる中国での展開を計画している「DFP-14323」は臨床 第Ⅲ相試験の準備に入るなど、開発・事業化は着実に進捗している。

引続き各種リリースに注目していきたい。

<参考:コーポレートガバナンスについて>

◎組織形態、取締役、監査役の構成

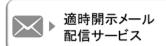
組織形態	監査役設置会社	
取締役	8名、うち社外4名	
監査役	3名、うち社外2名	

◎コーポレートガバナンス報告書

最終更新日:2020年7月1日

<基本的な考え方>

当社は「「モジュール創薬」により、安心して家族のがん患者に勧められる治療法を提供する。」というミッションの下、株主をはじめ、顧客、取引先、従業員、地域社会等の全てのステークホルダーの利益を重視した経営を行うことが当社の使命であると考えています。そのためには、当社事業が安定的かつ永続的な発展を果たすことが不可欠であり、このような発展の基盤となる経営の健全性、透明性及び効率性が確保された体制の整備を進めることをコーポレート・ガバナンスの取組みに関する基本方針としています。



<コーポレートガバナンス・コードの各原則を実施しない理由> 「基本原則をすべて実施しています。」と記載している。

本レポートは情報提供を目的としたものであり、投資勧誘を意図するものではありません。また、本レポートに記載されている情報及び見解は当社が公表されたデータに基づいて作成したものです。本レポートに掲載された情報は、当社が信頼できると判断した情報源から入手したものですが、その正確性・完全性を全面的に保証するものではありません。当該情報や見解の正確性、完全性もしくは妥当性についても保証するものではなく、また責任を負うものではありません。本レポートに関する一切の権利は(株)インベストメントブリッジにあり、本レポートの内容等につきましては今後予告無く変更される場合があります。投資にあたっての決定は、ご自身の判断でなされますようお願い申しあげます。

Copyright(C) 2020 Investment Bridge Co.,Ltd. All Rights Reserved.

ブリッジレポート(Delta-Fly Pharma: 4598)のバックナンバー及びブリッジサロン(IRセミナー)の内容は、<u>www.bridge-salon.jp/</u>でご覧になれます。

同社の適時開示情報の他、レポート発行時にメールでお知らせいたします。

ブリッジレポートが掲載されているブリッジサロンに会員登録頂くと、

>> ご登録はこちらから

投資家向けIRセミナー「ブリッジサロン」にお越しいただくと、 様々な企業トップに出逢うことができます。

株式投資に役立つ様々な便利機能をご利用いただけます。

>> 開催一覧はこちらから